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Abstract. We introduce a novel binary operation on specifications. The most abstract

common refinement (m.a.c.r.) of two specifications P1 and P2 is the most abstract

specification that refines both P1 and P 2 . We define the m.a.c.r.s of w-automata and
of linear temporal formulae. The m.a.c.r. operation supports a two-dimensional system
design process that combines structural decomposition with stepwise refinement. As an
example, we design and verify a watch in several steps, each of which simultaneously
integrates and refines two partial specifications of the watch.

The divide-and-conquer approach to system development requires that the task of designing a
large system be decomposed into subtasks. There are two avenues of decomposition that have

been pursued. The horizontal (static, structural) decompositiL.n divides the problem of designing

a large system into several simpler problems of designing manageable subsystems. Horizontal
decompositions of the design process are often labelled as "modular (compositional) design" [AL89,

dR85, FFG91, Jon83, Lar90, Pnu85]. The vertical (dynamic, temporal) decomposition divides the
problem of designing a large system into several simpler problems of gradually transforming an
abstract specification into a concrete system. Vertical decompositions of the design process are
often labelled as "stepwise refinement" [AL88, Bac89, CM88, Dij76, Jon89, Lyn89, WLL88, Wir71].

We present a formal framework that combines both approaches and allows the two-dimensional
decomposition of the design process. Starting from a collection of system requirements, each of
which describes the entire system (not just a structural component), we apply a tree-like process

of simultaneously integrating and refining the initial requirements into the desired system. Each
step of the process computes the so-called most abstract common refinement (m.a.c.r.) of two

partial system descriptions P1 and P2 , namely, a system description that is more concrete than

both P1 and P 2 , but not unnecessarily so. The m.a.c.r. thus combines horizontal decomposition

("common") with vertical decomposition ("refinement") in a way ("most abstract") that yields a

mathematically complete system design strategy.
Both parallel coml)osition (horizontal) and standard refinement (vertical) are shown to be spe-

cial cases of mn.a.c.r. (two-dimensional): parallel composition combines two descriptions of system
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parts that are given at the same level of detail; standard refinement combines two system de-
scriptions that are given at different levels of detail; m.a.c.r., in general, combines two system
descriptions, each of which describes different parts of the system at different levels of detail.

In Section 1, we define the m.a.c.r. operation on system descriptions (specifications) independent
of any particular formalism. In Section 2, we show that an m.a.c.r. operation on states and actions
induces an m.a.c.r. operation on behaviors (infinite sequences of states and actions) and properties
(sets of behaviors). Sections 3 and 4, then, study the m.a.c.r. operation in two specific trace-based
formalisms. First, we compute m.a.c.r.s of automata; then, we introduce a temporal logic with
an m.a.c.r. operator. We illustrate the application of m.a.c.r.s in both formalisms by the stepwise
design and verification of a watch that operates in several modes.

1 The Most Abstract Common Refinement

A specification formalism (C, C, 1) consists of

(1) the specification language C-a set of specifications;
(2) the refinement (satisfaction, implementation) relation C-a preorder on 'C; and
(3) the empty (inconsistent) specification 3--a unique bottom element of (C, C).

Typical examples of specification formalisms are the set of process terms with simulation, the set of
automata with language inclusion, and the set of linear temporal formulae with logical implication.

A specification formalism (C, C_, _L) supports the design (refinement, implementation) of sys-
tems. Suppose that the desired properties of a system are given as a list P1, ... , P,. E C of re-
quirements. The desired system, then, is a nonempty common refinement P1i..... E C of all n
requirements:

(1) Pl..... 5 1. and
(2) for all 1 < I < n, P1..... _P;.

A refinement strategy is a procedure that, given the list of requirements, constructs a common
refinement. The refinement strategy is complete if it finds a nonempty common refinement of the
requirements whenever such a refinement exists (otherwise, the strategy returns I_).

A refinement strategy is stepwise (incremental) if it constructs a common refinement of n
specifications by repeatedly computing common refinements of two specifications. For example,
we may first find a common refinement P1,2 of P1 and P2, then a common refinement of P1 ,2
and P3 , etc. A stepwise refinement strategy consists, therefore, of a control structure-a binary
tree whose leaves are labelled with the initial requirements P1 ,..-, Pn and whose root is labelled
with the resulting system P1 ... ,,-and an algorithm for computing a common refinement of two
specifications. Stepwise refinement strategies have two advantages. First, the complexity of each
step is more manageable than the overall problem. Second, if at a later time we h to add a
new requirement P,,+,, the system P1 ....... can be updated incrementally by computing a comnion
refinement of P1. ,• and P,,+i.

If a stepwise refinement strategy introduces, at any step, unnecessary constraints, then the
strategy is not complete. Thus, to define complete stepwise refinement strategies, we are led to the
notion of a most abstract (most general, greatest) common refinement (m.a.c.r.): the specification
Q is an m.a.c.r. of the two specifications Q, and Q2 if Q is a greatest lower bound of Q, and Q2;
that is,

(1) QC_Qj and QCQ2, and
(2) for all specifications P, if P1_Q 1 and PCQ 2 then PCQ.
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A specification formalism (1C, CZ, -) is a refinement structure if every pair of specifications has

an m.a.c.r. Two specifications Q, and Q2 are equivalent if Q1CQ2 and Q2•Q 1. Since the refine-
ment relation C_ need not be antisymmetric, the m.a.c.r. of two specifications is unique only up to
equivalence. For example, automata with language inclusion and linear temporal formulae with
logical implication are refinement structures: the m.a.c.r. of two automata over a common alphabet
is the product (intersection) of both automata (unique up to language equivalence); the m.a.c.r.
of two formulae over a common set of variables is the conjunction of both formulae (unique up to
logical equivalence).

From now on, we shall freely interpret the equality symbol between two specifications of a
refinement structure as equivalence. This allows us to introduce an m.a.c.r. operation and to write
Q, n Q2 for "the" m.a.c.r. of Q, and Q2. The binary function nl is associative, commutative,
idempotent, and QIEQ2 implies Q, n' Q2 = Q1. It follows that refinement structures support
the stepwise design oC systems: every stepwise refinement strategy that, at each step, computes
the m.a.c.r. of two (initial or intermediate) specifications is complete (not to mention that the
computation of m.a.c.r.s eliminates the problem of "guessing" common refinements). In particular,
a stepwise refinement strategy that computes m.a.c.r.s only may rely on any control structure.

We conclude by pointing out that an algorithm for computing the m.a.c.r. of two specifications
provides not only a complete method for the stepwise design of systems, but also a complete method
for the verification of system requirements that are given at different levels of abstraction: a system
P1 E C satisfies a requirement P2 E 12-that is, P 1 EP2-iff P1 n P2 = P1.

2 Trace refinement structures

Language inclusion is a very rough notion of refinement for trace-based formalisms. Typically one
wishes to refine the states and actions of a trace by introducing new auxiliary variables [ALSS],
rather than throw away the entire trace. Thus we assume that the underlying alphabets of states
and actions are not flat, but themselves refinement structures. We then lift these refinement
structures on states and actions to a refinement structure on behaviors (infinite sequences of states
and actions) and a refinement structure on properties (stutter-closed sets of behaviors). Closure
under stuttering allows us to refine a single action with a finite sequence of actions [Lam83].

2.1 Uninterpreted trace refinement structures

Let A = {a, b, c,.. .} be an alphabet of symbols. Let C be a binary relation on A and let I be a
symbol in A such that

(1) (A, C, _L) is a refinement structure and
(2) for every symbol a E A there exists a stutter symbol Tr E A such that for all symbols

a and b, Tanb = Ta nl Tb.

In particular, Tj = I for the bottom symbol I.
A behavior is an infinite sequence of symbols. We write a(i) for the i-th symbol of the se-

quence a. The behavior a, refines the behavior a 2 if all symbols of a1 refine the corresponding
symbols of a 2; that is, a1 _a 2 iff for all i > 0, a1(i)Ea 2(i).

Lemma 1 (AW, E, -Lo) is a refinement structure. In particular, for all i > 0, (a1 f-1 a 2 )(i)

(1 I.(i) n (V2. 
. . .
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A property P is a nonempty set of behaviors that is closed under stuttering; that is, if a is in P
and a' results from a by adding the stutter symbol r,,(i) before the i-th symbol of a, for any i > 0,
then a' is also in P. We write CA for the set of properties. The property P1 refines the property
P2 , written PIEP2 , if for every behavior a, in P1 there exists a behavior a 2 in P 2 such that (A
refines a2.

Proposition 1 (,CA, C_, {(1}) is a refinement structure. In particular,

Pn P 2 = {a I 3l E P 1 .3a 2 E P2 .a = a nlna2 }.

We call (ZA, C, {I-w}) the trace refinement structure of (A, C, .L).

2.2 The trace refinement structure of states

Let U = {x, y, z,... } be a universe of variables. A state (V, F) consists of a set V of variables from
U and a function F from V to a set of values, which contains the inconsistent value ±. Given
a state s, we write V, for the variables of s and F, for the function of s. The state s should be
thought of (1) constraining, by F,, the values of the variables in V1, and (2) not constraining the
values of the variables that are not in V3 . By E we denote the set of all states; by Ev, the set of

states s with V, = V.
If a variable x is assigned the inconsistent value 1, this indicates that the entire state is in-

consistent (cannot occur). Let sv -= (V, Ax. .) be the bottom state on V, and s1 = sP. The
state s refines the state t, written set, if V, 2 Vt and for every variable x in Vt, if F,(x) $ I-
then F3 (x) = Ft(x). That is, s further constrains the variables of t and possibly constrains other,
typically auxiliary, variables. Given a state s, the stutter state r, is s itself.

Proposition 2 (E, E, sj.) is a refinement structure. In particular, V3nt = Vs U Vt and for each
variable x E s'nt,

SI ifx E V, and x E Vt and Fs(x) 5 Ft(x),

Fsnt(x) = F,(x) if x E V, and either x 0 Vt or Fs(x) = Ft(x),

Ft(x) otherwise.

Furthermore, for all states s and t, rnt = T3 nl Tt.

In other words, the m.a.c.r. of two states a and t is the state that does not constrain any
variables other than the variables of s and t, and those are constrained in a way that is consistent
with both s and t without being unnecessarily restrictive.

If we fix the set V of variables and consider only states in Ev, we obtain again a refinement
structure with stutter states. This is because V, = Vt implies V3 = Vsnt, and because V,, = V,.

Corollary 1 If V is a set of variables, then (Ev, E_, sv) is a refinement substructure of(E, C, s± ).

In particular,
= f I if F3 (x) $ Ft(x),

3Fst~X) = F,(x) otherwise.

It follows that all results of Section 2.1 apply for the set E of states, as well as for all subsets :v.

In particular, the state refinement structure (E,_Es±) induces a refinement structure on state
behaviors (infinite state sequences) and a trace refinement structure on state properties (stutter-
closed sets of state behaviors).
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2.3 The trace refinement structure of actions

An action p is a state transformation [Lam9l] and can be refined in two ways, (1) by further
constraining the effects of p on its variables, and (2) by introducing new auxiliary variables to
model the execution of p in greater detail.

Formally, an action (V, R) consists of a set V of variables from U and a binary relation R on E.
such that (sV,sv) E R. Given an action p, we write Vp for the variables of p and Rp for the relation
of p. The action p should be thought of (1) constraining, by Rp, the ways in which the variables in
1ý may change as a result of performing p, and (2) not constraining what happens to the variables
that are not in Vp. By fl we denote the set of all actions; by I 1v, the set of actions p with VP = V.

Two states s and t are consistent if they agree on all common variables; that is, for all x E VlKn fV,
F,(x) = Ft(x). Let R be a binary relation on the set Ev of states over V, and let V' be a set of
variables. The adjustment RV' of R to the variables in V' is a binary relation on EV, such that
every pair of states in Rf'1 agrees with a pair of states in R on the values of all common variables;
that is, (s', t') E RV' iff there exists a pair (s, t) of states in R such that s and s' are consistent.
and t and t' are consistent.

Let pv = (V, {(s', sv)}) be the bottom action on V, and p.. = pI. The action p refines the
action q, written p~q, if V, _D q and R_9 C Rq; that is, p further constrains the variables of q and
possibly constrains other, typically auxiliary, variables. Given an action p, the stutter action rp
consists of the set Vp of variables and the relation {(s, s)1(s, t) E Rp}; that is, r. leaves the variables
of p unchanged and allows arbitrary modifications of all other variables.

Proposition 3 (-I, C,p±) is a refinement structure. In particular, I/vnq = Vp U Yq and

Rpnq =Rvpuvg n RVpuvq.p q

Furthermore, for all actions p and q, rpnq = Tp n Tq.

In other words, the m.a.c.r. of two actions p and q is the action that does not constrain any
variables other than the variables of p and q, and those are constrained in a way that is consistent
with both p and q without being unnecessarily restrictive. The action p fl q should, therefore, he
thought of as the simultaneous concurrent execution of both p and q.

If we fix the set V of variables and consider only actions in -Iv, we obtain again a refinement
structure with stutter actions. This is because Vp = V, implies Vp = Vpiq, and because V/p = Vp.

Corollary 2 If V is a set of variables, then (flv, E_,pv) is a refinement substructure of(ll, C. pfl.
In particular, Rpnq = RP nl Rq.

It follows that all results of Section 2.1 apply for the set II of actions, as well as for all subsets 1l-1.
In particular, the action refinement structure (II,C ,p.) induces a refinement structure on action
behaviors (infinite action sequences) and a trace refinement structure on action properties (stutter-
closed sets of action behaviors).

2.4 From actions to states and back

Now we establish the connection between the state-based and the action-based view and show that
they are essentially equivalent.

We use the function Stat to translate action properties into state properties. The state tra.l'-
lation Stat[ir] of an action behavior 7r contains the infinite state sequence a if for all i > 0, ther,,
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is a pair of states (si, ti) in R,(j) such that a(O) = so and for i > 0, ti-I and si are consistent and
a(i) = ti-l n si.

Consider, for example, the behavior r = ppqq... with

Vp = {x}, and (s, t) E Rp iff Ft(x) = F,(x) + 1;

14 = {y}, and (s, t) E Rq iff Ft(y) = F,(y) + 1;

that is, p increments the variable x and q increments the variable y. Then Stat[7r] contains a state
sequence whose first four states are (x: 5), (x: 6), (x: 7 , y: 0), and (y: 1).

The state translation Stat[P] of an action property P is the stutter closure of the set

{a I 3ir E P. a E Stat[,r]}

By definition, Stat[P] is closed under the stuttering of states.

Proposition 4 The state translation Stat is a homomorphism from the trace refinement structure
of (fl, C,p 1.) to the trace refinement structure of(E, C,s±).

We use the function Act to translate state properties into action properties. The action trans-
lation Act[a] of a state behavior a is an infinite action sequence r such that for all i > 0,
V11(i) = Va(i) U Va(i+,) and

Rr(O = {(s, t) I Vx E V,,(j). F,(x) = ± or F,(x) = F,(j)(x)

and
Vx E V,(i+1 ). Fj(x) = ± or Ft(x) = F,(i+,)(x)}.

The action translation Act[P] of a state property P is the stutter closure of the set

I 3a E P. r = Act[a]}

Again by definition, Act[P] is closed under the stuttering of actions.

Proposition 5 The action translation Act is a homomorphism from the trace refinement structurc

of (E, C, sj_) to the trace refinement structure of (Hl, , pj).

3 Specification Language 1: Automata

We use Muller automata to specify properties.

A Muller automaton M = (S, SO, E, F) over the input alphabet A consists of a finite set S of
control locations, a set SO C S of start locations, a function E : S x S -- A that assigns input
symbols to all transitions, and a set F C 2 S of acceptance sets. If E(r, r') = a, then the automaton

can change the control location from r to r' by reading the symbol a. A behavior a is a run of .f
if there exists an infinite sequence p of control locations such that

(1) p(O) is a start location (p(0) E SO),

(2) for all i > 0, the transition from p(i) to p(i + 1) is labelled with a(i) (E(p(i),p(i +
1)) = a(i)), and

(3) the set of control locations that occur infinitely often in p is in F.

Let L(M) be the set of runs of M.

The transition label _ indicates the absence of a transition. Given a set L of sequences, let [L]

be the maximal subset of L that does not contain a I symbol. The language of the automaton M,

then, is the set [L(M)] of runs that do not contain I.

6



3.1 The most abstract common refinement of automata

The property P(M) that is defined by the Muller automaton M is the stutter closure of the
set L(M) of runs. We write £D for the set of properties that are definable by Muller automata
over the alphabet A. The constructive proof of the following theorem provides a method for the
stepwise design of systems from requirements that are given as Muller automata.

Theorem 1 L- is closed under n. In particular, given two Muller automata M1 , (Si, SO, Ei, F1)
and M 2 = (S 2 , S2, E2 , F 2 ),

P(M 1 n M 2 ) = P(M 1 ) n P(M 2)

for the Muller automaton M1 fl M2 = (S, SO, E, F) with

S = S1 X S2 ,
So = sX S°,

E((r1,2), (r',,')) = Ei(ri,r) lE2(r2,r'),
F = {RIRi E F1 andR 2 E F2 },

where Ri, for i = 1,2, is the i-th projection of the set R of pairs.

Corollary 3 (/w, 1, {-w}) is a refinement substructure of the trace refinement structure of(A, C, _L).

Suppose that we interpret the input symbols as actions. The m.a.c.r. M1 nl 1 2 of two automata
A1 , and M2 performs, then, an anfb action iff M1 performs an a action and M 2 performs a b action.
The nl operation on automata, therefore, is a generalized product operation. Indeed, standard
product operations are special cases.

Most abstract common refinement as communicating composition. The communicating
product M of two automata M1 and M 2 performs an a action iff both M1 and M2 perform a actions;
that is, L(M) = L(Mi) n L(M 2). The communicating product is the m.a.c.r. of two automata if
the underlying refinement structure (A, C_, _L) is flat:

(1) for all actions a and b, if aCb then a = b or a = I, and
(2) for all actions a, ra = I.

Condition (1) ensures that no two distinct executable actions have an executable common refine-
ment; condition (2) ensures that no executable action of one automaton can be performed together
with a stutter action of the other automaton.

Most abstract common refinement as truly concurrent composition. The truly concurrent
product of two automata M1 and M 2 performs an (a, b) action iff M1 performs an a action and 112
performs a b action. The truly concurrent product is the m.a.c.r. of two automata if the underlying
refinement structure (A, C, _.) has products:

(1) for all actions a and b, afnb = (a,b),
(2) for all actions a and b, (a, b) = I iff a = I or b = _, and
(3) for all actions a, ra = I.

Most abstract common refinement as interleaving composition. The interleaving product
M of two automata M1 and M2 performs an a action iff either Mi performs an a action and 11,2
performs a stutter action, or vice versa. The interleaving product is the m.a.c.r. of two automata
if the sets of actions A 1 and A2 of the two automata are disjoint, every location contains a self-
loop transition labelled with a stutter action and stutter actions label only self-loops. Finally, the
underlying refinement structure has products:

7



(1) for all actions a E A, (A2) and b E A2 (A,), if a is a stutter action then a n- b = b,
(2) for all actions a E A 1 and b E A2, if both a and b are not stutter actions then

af b = I.

The following example illustrates that, in general, the most abstract common refinement of
two automata is perhaps best viewed not as a product, but as the "most general unifier" of the
transition graphs.

3.2 Example: stepwise watch design

Consider a watch that has three modes of operation: Display, Update, and Stopwatch. We define
the watch by three Muller automata. While each of the three automata specifies the entire watch,
it provides details only for one mode of operation. The m.a.c.r. of the three automata, then, and
not the product, is a suitable implementation of the watch.

The Display mode and its connections to the other modes are specified by the automaton
Aid = (Sd, ,O, Ed, Fd) of Figure 1 (we write {r} U 2s short for {{r} U R I R E 2S}). For simplicity
we omit in Figure 1 and in the following figures self-loops of the automata labelled with stutter
actions. Thus, assume that if a transition labelled a starts at location s then s has a self-loop
transition labelled with 7a. To reduce the size of Md, we assume that the watch always displays
one of only three possible time values; they are represented by the locations So, S1, and s2 . Time
advances with tic actions. The watch has two control buttons, cb1 and cb 2. When cb, is pressed,
the watch switches from Display mode to Update mode (location s4 ), and back, via the action a0 ,
a,, or a2. The second button cb2 causes a switch to Stopwatch mode (location s3), and back, via
the action bo, bl, or b2. The action x abstractly represents any actions of the watch while it is not
in Display mode.

The Update mode and its connections to the other modes are specified by the automaton
= (S., SO, E., F.) of Figure 2. In locations wo, wi, and w2, time advances with tuc actions.

When cb2 is pressed, the watch decrements time (action d). The action y abstractly represents any
actions of the watch while it is not in Update mode (location w3 ).

The Stopwatch mode and its connections to the other modes are specified by the automaton
M• = (S•, S°, E3, F8 ) of Figure 3. In locations m, to ing, time advances with tac actions, updating

both the time and the stopwatch counter. Since the stopwatch can be initiated at any of the
three possible time values, there are nine possible locations. The action z abstractly represents any
actions of the watch while it is not in Stopwatch mode (location m0 ).

In addition to the three automata we are also given a refinement relation C on the actions. The
refinement relation for the actions of Md and M, is shown in Figure 4 (we omit the bottom and
the stutter actions). Figure 4 also presents the most abstract common refinement AMfd nf M• of the
two automata Md and M,,. The m.a.c.r. automaton has a transition graph similar to the transition
graph of the Display automaton Md, except that location s,, which represents the Update mode,
has some inner structure. The transition graph of Aid "ll M, is also similar to the transition graph
of the automaton M,, except that location w3 has some inner structure. The complete watch .I1
is obtained by taking the m.a.c.r. of the two automata Md n M•, anid Al, (see the full paper).

Now assume that after the completion of the watch design, we decide to produce an improved
model by doubling the precision of the stopwatch component. The automaton M, of Figure 5
specifies the new stopwatch component. Figure 5 also shows the refinement relation for the actions
of the old and the new stopwatch components. We need not construct the new watch from scratch.
Rather, we first prove that M.' refines M,-that is, P(M,)CP(M 8)-and then take the m.a.c.r.
of the old watch M and the new stopwatch component M,. To prove that P(M•)EP(M8 ), it

8



suffices to show that the two Muller automata M" n M, and MA' define the same properties (trace
equivaluace).

4 Specification Language 2: Temporal Logic

We introduce a linear temporal logic, called TL', to specify properties. The novelty about TL' is
that it contains an m.a.c.r. operator and therefore supports the refinement of formulae.

4.1 A temporal logic with a most-abstract-common-refinement operator

Let 2 A be a set of atomic formulae. Every atomic formula 4 defines a set 1b of symbols from A.
An atomic formula -b is stutter closed if for every a E Ifl, 7a is also in [4].

The temporal formulae % of TL' are defined by the following grammar:

T ::= 1[]1IoT1T1,, n 21±,

where ¢ and - are atomic formulae and 0 is stutter closed. Stutter closed atomic formulae are
typically used to specify the initial conditions of a system; boxed atomic formulae, to specify
the transition relation; temporal operators, to specify the fairness assumptions (since TL' lacks
negation on the temporal level, both 0 and 0 are given). The m.a.c.r. operator n-, finally, is

typically used to combine several specifications of a system.
The TLn-formula T defines the set [I] of behaviors:

a E [1 iff a(O) E 101;
a E 10[•]] iff for all i > 0, a(i) = r7 (i+l) or a(i) E [i;
a E 0'nI] iff for all i > O, a[i..] E IT];

a E 10%l iff for some i > 0, a[i..] E ITI;
a E ~lk 2 1 iff a E [,i'fll I2;
a E[L iff a = I,

where a[i..] denotes the infinite suffix that begins with zhe i-th symbol of the sequence a.

Lemma 2 For every TLn-formula IF, the set [IF] is a property (i.e., I']j is closed under stuttering).

A judgment of TL' is an expression of the form %1F'-_ 2 , for TLn-formulae qI a;.d XF2. The

TLn-judgment 4P 1' 1 is true if I 1 JJC-T2 1. (The judgments of ordinary logic, by contrast, are of
the form = iP, which is true if the formula 4D is valid.)

TLn-judgments are used to assert correctness conditions of systems. Suppose, for example,
that we have a list %P..., 9,, of system requirements and we wish to prove that every system
that satisfies these requirements also satisfies q'. This ccrrectness condition is asserted by the
TLn-judginent

%Pl n ... n ,_.

4.2 TL' versus TLA

To compare TLn with TLA [Lam9l], we interpret TLn-formulae over action properties.
An action formula 4 is a boolean expression over a set Var(4) of variables that may occur in

ýD either primed or unprimed. An action formula P is a state formula if only unprimed variables
occur in C

9



The action formula - defines the action ao such that Va, = Var( '), and (s,t) E R,,, iff
'D evaluates to true when every unprimed variable x is interpreted as F,(z) and every primed
variable x' is interpreted as Ft(x). For example, (s,t) E [y = 0 A x' = x + 1 iff Var(s) = Var(t) =

{X, y} and F,(y) = 0 and Ft(x) = F,(x) + 1.
The action formula t defines the set of actions [1t that consists of the action ap and if 4

is a state formula then 1Ot also contains the stutter action ra,. If the atomic formulae of TL'
are action formulae and the stutter closed atomic formulae of TL' are state formulae, then every
TLn-formula defines an action property. We call the resulting logic TLA'.

Let %P be a TLAn-formula, and let Con[%P] be the TLA-formula that results from 41 by replacing
all m.a.c.r. operators n with conjunctions A and by replacing all occurrences of I with the truth
value false. Every TLA-formula q defines a state property 1€6 (Lam9l]. For a TLA'-formula t1 let
[q4n be the adjustment of all state behaviors in Stat[ITI] to the universe of variable U. That is,
if (1/o, Fo)(V 1, F1) ... E Stat[ý%L]j then (U, F0)(U, 4') ... E l['In, where F' is an extension of the
function F to the domain U.

Theorem 2 For every TLAn-formula %P, [Con[*]] Cg fJPJ 4 .

The converse of this theorem is not true. Consider, for example, the universe 4 = {x, y} of
variables and the two specifications 9 1 = O[x/ = x + 1J and tF2 = CLy' = y + 1]. While the behavior

(x: 3, y: 5),(x: 4, y: 6),(x:4, y: 7),(x: 4, y: 8),...

is a model of the TLAn-formula P1l n'&2, it is not a model of the TLA-formula T, A VF2.

4.3 Example: verification of the watch design

In proving that property P refines property Q it is often convenient to define property P by :a
formula of the form V, fnIQ". Formula 'V defines only the behavior of the more refined variables
of P and the formula IQ" set the connection among the variables Q and the variables of V'. Let
us consider again the watch example in Section 3.2. In Figure 6, we present a temporal formula
Stopwatch1 that defines the first (more abstract) version of the stopwatch. The Stopwatch1 formula
is defined over the variable t (the current time) that ranges over the values {0, 1,2}, the variable st
(the current time of the stopwatch) that ranges over the values {0, 1,2} and the variable mat• (the
mode of the watch) that ranges over the values {stw, nstw}. In Figure 6 we also present a temporal
formula Stopwatch2 that defines the second version of the stopwatch. This formula is the m.a.c.r.
of two subformulas: IV' refers only to the variables dt (the current time), dst (the cul, nt time of

the stopwatch) and mgtt, (the mode of the watch), where the variables dt and dst range over the
values {0.0,0.5,1.0,1.5,2.0,2.5}. The second subformula IF" defines the connection between the
variables t and dt and the variables st and dst.

We use the following sound rule to prove that Stopwatch2CStopwatchl:

$l A t 3  *:€ Q,
(('t2 V ro,) A -t3) =>(P2 V 'rk,)

4ý3~ => P3

(b n o['D2] no¢3) C- (,Plno1[T 2]nomq3)

where, (3 and 413 are state formulae, Tr = (enable(O) AAxE Va(0) .X = x')' and => is logical
implication.

'The predicate enable(f) [Larn91] evaluates to true in state s iff there exists a state t such that 4) evalu,.i- 1"
true at (s, t).

10



The premises of the above rule require proving simple first order validities (see the full paper).

5 Discussion: Most Abstract Common Refinement versus Mod-
ular Refinement

Traditional stepwise refinement strategies are linear rather than tree-like: one constructs a sequence
of refinement steps P1 ]P 2 Q ... _P, moving gradually from the most abstract specification P,
to the most concrete, perhaps executable, specification Pn. Since tle complexity of verifying
a refinement step P,+jCP, depends on the sizes of Pi and Pi+,, modular refinement strategies

have been proposed [Bac89, Ger89, Jon89]. The modular approach first develops (refines) system
components independently, and then integrates the refined components into a single system.

The modular approach has two properties that limit its scope of applicability. Neither limitation

is shared by m.a.c.r.-based refinement strategies.
First, in the modular approach, the refinement relation must be a precongruence to guaran-

tee that the system that results from integrating the refined parts is a refinement of the init:al

specification. Formally, for every context C[-] of the specification language, Q1lQ2 must imply
C[Qj]gC'[Q2j. Second, in the modular approach, the decomposition of a specification is driven
by the structure of the specification. For example, if the top-level of a specification is a parallel-

composition operator, then both processes must be developed independently.
In [WLL88] a lattice-structured refinement strategy is presented. According to this strategy,

several specifications of the system are developed at different levels of abstraction and the lattice
represents the refinement relation among these specifications. Our refinement strategy differs from
that in [WLL88] in eliminating the problem of "guessing" common refinement, we construct a
common refinement using the m.a.c.r operator.
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bO aO &

Fd = {{sO, sl,s2}, {s4} U 2W,{s3} U 2'

bi a2 where W {sO,..., s4}

Figure 1: The Md automaton

e2 Co0 tuc d dtuc F,, = {2w - 0)

d w where W' = {O, t , w2, z3}

Figure 2: The M, automaton

0
tac/ t

F,,- {{mI, m2, m3}, {m4, m5, m6}, {m7,m8, m9}, {mO} U2

wher W - {moO,..., m9}

Figure 3: The Ms automaton
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Figure 4: The refinement relation on the actions and the Md fl M, automaton
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Ttctac 10 fl N2 z

dtacl dtac2 dfO df f2 dz
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Stopwatch version 1:

tac = mt,,= stw At' =(t +1): mod: 3A t' =(st+ 1): mod: 3 Amrn'tmsew
fo = t= 0 A((matw = ntw A mtw = tw Ast' =O)V

(mngw = tw Am',,, = nstw A t' =st)) At'= t
f,= t = 1 A((m,,tw= nstw A m't ==stw Ast'=O0))V

(m~tw =stw A m/ t = nstw A t' =st)) At'= t

f2 = t = 2A((m~t. nstw A m't tw Ast'= 0))V

(m~stw = stu A mt= nstw A st' = at)) A t' = t

= (m~tw = nstw) A (mt = m~tw)

The Stopwatch 1 formula is:

(t = 0 A at = 0 A m~,, = nstw) fl
O[tac V Jo V f1 V f2 V z]

Stopwatch version 2:

dtacl = [dtj = dt A dt' = (dt + 0.5): mod: 3 A dat' = (dat + 0.5): mod: 3 A m't = m

dtac2 = [dtj 0 dt Adt' = (dt +0.5): mod: 3 A dt' = (dt +O0.5): mod: 3 A m' = m8,tw

dIfo = [dtj = 0 A ((m~tw = nstw A m't = atw A dat' = O)V
(m~tg, = atw A m't = nstw A dat' = dst)) A dt' = dt

(If = Ldtj = 1 A ((m,,t, = nstw A mst = stw A dst' = 0)V
(t, = atw A m'j = nstw A dst' = dst)) A dt' = dt

df2  = [dtj = 2 A ((m~tw = nsiw A maw = stw A dst' = 0)V
(m~~tI -t nstw A dst' =dst)) A dt' = dt

dz = (m.,tw = natw) A (m'tw, = mqtw)

The Stopivatch2 formula is: %'I" %V I where

411= (dt = 0QA dt = 0 A m8 t = nstw)Fn
O(dtacl V dtca2 V dfo V df1 V df 2 V dz]

and
T"= O(t = Ldtj A at = Ldstj)

Figure 6: Stopwatch versions in TLA'
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